雞兔同籠問題解法清華大學教授
1. 王文湛教過數學嗎
王文湛教過數學。
雞兔同籠和注水防水確實是我國小學經典數學試題,這樣的題不光是考察計算能力,還考察常識和思維變通,所以一直以來都經久不衰。
2. 清華教授發聲指責小學習題,小學數學習題的意義究竟何在
清華大學教授不會寫小學數學題,這是大家完全沒有想像到的一件事情,要知道清華大學是非常難考的。那麼清華大學的教授都不會做,如今的小學奧數題,這是讓人難以置信的。數學是可以開拓人的思維,讓人變得更加的聰明,而且數學確實是非常重要的一門課程。可是如今小學的數學題越來越難了,有很多的家長都表示,在小學二年級開始孩子的數學作業就已經不能輔導了。
其實數學題最先開始只是為了開拓大家的思維,也能夠讓人變得越來越聰明。剛學會說話的小朋友都知道1+1是等於二的,可是1+1為什麼等於二?這也讓很多的科學家非常的困惑,於是就開始研究。這種東西到底是否值得研究?這也是很多網友非常疑惑的。
3. 楊振寧簡介
姓名:楊振寧
性別:男
出生年月:1922年10月1日
籍貫:安徽合肥
學歷:博士後
楊振寧是1922年10月1日生於安徽合肥(後來他的出生日期在1945年的出國護照上誤寫成了1922年9月22日)。他出生不滿周歲,父親楊武之考取公費留美生而出國了。4歲時,母親開始教他認方塊字,1年多的時間教了他3千個字。楊振寧在60歲時匾淥擔?現在我所有認得的字加起來,估計不超過那個數目的2倍。"
1928年楊振寧6歲的時候,父親從美國回來,一見面就問他念過書沒有?他說念過了。念過什麼書?念過《龍文鞭影》。叫他背,他就都背出來了。楊振寧回憶道:"父親接著問我書上講的是什麼意思,我完全不能解釋。不過,我記得他還是獎了我一支鋼筆,那是我從來沒有見過的東西。"
楊振寧讀小學時,數學和語文成績都很好。中學還沒有畢業,就考入了西南聯大,那是在1938年,他才16歲。1942年,20歲的楊振寧大學畢業,旋即進入西南聯大的研究院。兩年後,他以優異成績獲得了碩士學位,並考上了公費留美生,於1945年赴美進芝加哥大學,1948年獲博士學位。
1949年,楊振寧進入普林斯頓高等研究院做博士後,開始同李政道合作進行粒子物理的研究工作,其間遇到許多令人迷惑的現象和不能解決的問題。他們大膽懷疑,小心求證,最終推翻了宇稱守恆律,使迷惑消失,問題解決。楊振寧在1957年諾貝爾演講中這樣說道:"那時候,物理學家發現他們所處的情況就好象一個人在一間黑屋子裡摸索出路一樣。他知道在某個方向上,必定有一個能使他脫離困境的門。然而究竟在哪個方向呢?"原來,那個方向就是宇稱守恆定律不適用於弱相互作用。"
楊振寧對物理學的貢獻范圍很廣,包括粒子物理學、統計力學和凝聚態物理學等。除了同李政道一起發現宇稱不守恆之外,楊振寧還率先與米爾斯(R.L.Mills)提出了"楊-米爾斯規范場",與巴克斯特(R.Baxter)創立了"楊-巴克斯方程"。美國物理學家、諾貝爾獎獲得者賽格瑞(E.Segre)推崇楊振寧是"全世界幾十年來可以算為全才的三個理論物理學家之一"。
楊振寧謹記父親楊武之的遺訓:"有生應記國恩隆"。他在1971年夏,是美國科學家中率先訪華的。他說:"作為一名中國血統的美國科學家,我有責任幫助這兩個與我休戚相關的國家建立起一座了解和友誼的橋梁。我也感覺到,在中國科技發展的道途中,我應該貢獻一些力量。"
楊振寧是這樣說,也是這樣做的。20多年來,他頻繁穿梭往來於中美之間,做了許多卓有成效的學術聯系工作。他寫過這樣兩句詩:"雲水風雷變幻急,物競天存爭朝夕。"
4. 有關數學幽默小故事
數學趣味小故事 1、蝴蝶效應 氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢? 這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。 這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的准確預測天氣是不可能的。 參考資料:阿草的葫蘆(下冊)——遠哲科學教育基金會 2、動物中的數學「天才」 蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。 丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契」? 蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。 冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。 真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。(生活時報) 3、麥比烏斯帶 每一張紙均有兩個面和封閉曲線狀的棱(edge),如果有一張紙它有一條棱而且只有一個面,使得一隻螞蟻能夠不越過棱就可從紙上的任何一點到達其他任何一點,這有可能嗎?事實上是可能的只要把一條紙帶半扭轉,再把兩頭貼上就行了。這是德國數學家麥比烏斯(M?bius.A.F 1790-1868)在1858年發現的,自此以後那種帶就以他的名字命名,稱為麥比烏斯帶。有了這種玩具使得一支數學的分支拓樸學得以蓬勃發展。 4、數學家的遺囑 阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二的遺產,我的女兒將得三分之一。」。 而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。 如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢? 5、火柴游戲 一個最普通的火柴游戲就是兩人一起玩,先置若干支火柴於桌上,兩人輪流取,每次所取的數目可先作一些限制,規定取走最後一根火柴者獲勝。 規則一:若限制每次所取的火柴數目最少一根,最多三根,則如何玩才可致勝? 例如:桌面上有n=15根火柴,甲、乙兩人輪流取,甲先取,則甲應如何取才能致勝? 為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上之分析可知,甲只要使得桌面上的火柴數為4、8、12、16...等讓乙去取,則甲必穩操勝券。因此若原先桌面上的火柴數為15,則甲應取3根。(∵15-3=12)若原先桌面上的火柴數為18呢?則甲應先取2根(∵18-2=16)。 規則二:限制每次所取的火柴數目為1至4根,則又如何致勝? 原則:若甲先取,則甲每次取時,須留5的倍數的火柴給乙去取。 通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數目必須為k+1之倍數。 規則三:限制每次所取的火柴數目不是連續的數,而是一些不連續的數,如1、3、7,則又該如何玩法? 分析:1、3、7均為奇數,由於目標為0,而0為偶數,所以先取者甲,須使桌上的火柴數為偶數,因為乙在偶數的火柴數中,不可能再取去1、3、7根火柴後獲得0,但假使如此也不能保證甲必贏,因為甲對於火柴數的奇或偶,也是無法依照己意來控制的。因為〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴數奇偶相反。若開始時是奇數,如17,甲先取,則不論甲取多少(1或3或7),剩下的便是偶數,乙隨後又把偶數變成奇數,甲又把奇數回覆到偶數,最後甲是註定為贏家;反之,若開始時為偶數,則甲註定會輸。 通則:開局是奇數,先取者必勝;反之,若開局為偶數,則先取者會輸。 規則四:限制每次所取的火柴數是1或4(一個奇數,一個偶數)。 分析:如前規則二,若甲先取,則甲每次取時留5的倍數的火柴給乙去取,則甲必勝。此外,若甲留給乙取的火柴數為5之倍數加2時,甲也可贏得游戲,因為玩的時候可以控制每輪所取的火柴數為5(若乙取1,甲則取4;若乙取4,則甲取1),最後剩下2根,那時乙只能取1,甲便可取得最後一根而獲勝。 通則:若甲先取,則甲每次取時所留火柴數為5之倍數或5的倍數加2。 趣味數學——智算酒壇 [ 2008-12-15 15:28:00 | by: 李紹剛 ]北宋的一個夜晚,一家小酒店的老闆正和伙計一起堆酒壇。因為近來生意特別好,酒壇自然也就多。老闆一邊在心裡樂,一邊盤算著如何發更大的財。他要把酒壇堆得整整齊齊,美觀大方,吸引更多的顧客光臨酒店。 酒壇堆得非常漂亮,一層一層整整齊齊。酒店門口的招幌迎風飄揚,使人不得不駐足逗留,忍不住想進店喝幾盅。酒店老闆得意揚揚之際,想數數酒壇一共有多少只。可是,數壇子也並不輕松,老闆從前面繞到後面,又從後面繞到前面,剛剛擦乾的汗水又冒出來了,伙計們都笑了 第二天。這堆酒壇果然吸引了不少顧客,老闆望著酒壇,樂不可支。這時,一位衣冠楚楚的青年書生走了過來,面對酒壇,若有所思。老闆心想:我昨天為了數清這堆酒壇,花了很大的功夫,這位青年相貌不凡,我倒要考考他看。 "年輕人,你知道這堆酒壇一共有多少個嗎?"老闆半開玩笑地問道。 "這很容易,只要你告訴我這堆酒壇最上面的那層一共幾排,每排多少個,一共有幾層。根本不用數,我馬上就知道這堆酒壇的數目。"年輕人這么說話,顯然有十足的把握。 "噢!"老闆心想:這位年輕人真會說大話,不妨把他提的條件告訴他,看看他的能耐到底有多大。於是老闆爽快地說: "最上面那層酒壇是四排,每排8個,第二層是五排,每排9個……" "好了,一共七層,"年輕人打斷了老闆的話,不加思索地報出了答案,"一共567個酒壇。對嗎?" 老闆一下子驚得連張開的嘴巴也忘記合攏了。這么快!老闆馬上把年輕人請進酒店,上茶,敬酒,招待得萬分周到。老闆真是打心眼佩服這位青年,又是請教姓名,又是討教數壇的方法。 這位青年就叫沈括。優越的家庭生活條件使他有機會讀書,加上他好奇心強,肯鑽研,於是他就成了很有才學的人。沈括回答老闆說:"我數這壇子的方法其實非常簡單,因為最中間那層共77個,共七層,只要再乘7,最後加上常數28就行了。" 沈括從小對籌算很感興趣,讀了許多數學名著。後來自己寫成了一本數學專著《隙積術》,專門研究高階等差級數的求和問題。沈括數壇的方法就是利用了高階等差級數求和的方法,要比單純地數方便多了。數學上還可能碰到數字更大,項數更多的題目,用這種方法便可一下子迎刃而解。
1、兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里? 答案 每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。 許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮·諾伊曼(John von Neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。 馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道 2、 有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」 正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。 在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。 如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候? 答案 由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。 既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。 這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮. 3、一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響? 懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎? 答案 懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。 懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。 逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。 風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。 4、《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下:令有雉(雞)兔同籠,上有三十五頭,下有九十四足。 問雄、兔各幾何? 原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。 設x為雉數,y為兔數,則有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根據這組公式很容易得出原題的答案:兔12隻,雉22隻。 5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。 經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。 問題:我們該如何定價才能賺最多的錢? 答案:日租金360元。 雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。 當然,所謂「經調查得知」的行情實乃本人杜撰,據此入市,風險自擔。 宋代大詩人蘇東坡年輕時與幾個學友進京考試.他們到達試院時為時已晚.考官說我出一聯,你們若對得上,我就讓你們進考場.考官的上聯是一葉孤舟,坐了二三個學子,啟用四槳五帆,經過六灘七灣,歷盡八顛九簸,可嘆十分來遲. 蘇東坡對出的下聯是十年寒窗,進了九八家書院,拋卻七情六慾,苦讀五經四書,考了三番兩次,今日一定要中. 考官與蘇東坡都將一至十這十個數字嵌入對聯中,將讀書人的艱辛與刻苦情況描寫得淋漓盡致. 學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里. 美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元. 點錯一個小數點,竟要了一條人命.正如牛頓所說在數學中,最微小的誤差也不能忽略. 世紀是計算年代的單位,一百年為一個世紀. 第一世紀的起始年和末尾年,分別是公元1年和公元100年.常見的錯誤是有人把起始年當作是公元零年,這顯然不符合邏輯和我們的習慣,因為在一般情況下,序數的計算是從1開始的,而不是從0開始的。而正是這個理解上的錯誤,所以才導致了世紀末尾年為公元99年的錯誤認識,這也是錯把1999年當作是二十世紀末尾年,錯把2000年當作是二十一世紀起始年的原因.因為公元計數是序數,所以應該從1開始,21世紀的第一年是2001年. 一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說請大家把這些小針往這張白紙上隨便仍吧1客人們按他說的做了。 蒲豐的統計結果是大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。這就是著名的蒲豐試。 1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。 工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。 這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為數學魔術家。 華羅庚出生於江蘇省,從小喜歡數學,而且非常聰明。1930年,19歲的華羅庚到清華大學讀書。華羅庚在清華四年中,在熊慶來教授的指導下,刻苦學習,一連發表了十幾篇論文,後來又被派到英國留學,獲得博士學位。他對數論有很深的研究,得出了著名的華氏定理。他特別注意理論聯系實際,走遍了20多個盛市、自治區,動員群眾把優選法用於農業生產。 記者在一次采訪時問他你最大的願望是什麼? 他不加思索地回答工作到最後一天。他的確為科學辛勞工作的最後一天,實現了自己的諾言。 數字趣聯 宋代大詩人蘇東坡年輕時與幾個學友進京考試.他們到達試院時為時已晚.考官說:"我出一聯,你們若對得上,我就讓你們進考場."考官的上聯是:一葉孤舟,坐了二三個學子,啟用四槳五帆,經過六灘七灣,歷盡八顛九簸,可嘆十分來遲. 蘇東坡對出的下聯是:十年寒窗,進了九八家書院,拋卻七情六慾,苦讀五經四書,考了三番兩次,今日一定要中. 考官與蘇東坡都將一至十這十個數字嵌入對聯中,將讀書人的艱辛與刻苦情況描寫得淋漓盡致. 點錯的小數點 學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里. 美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元. 點錯一個小數點,竟要了一條人命.正如牛頓所說:"在數學中,最微小的誤差也不能忽略. 二十一世紀從哪年開始? 世紀是計算年代的單位,一百年為一個世紀. 第一世紀的起始年和末尾年,分別是公元1年和公元100年.常見的錯誤是有人把起始年當作是公元零年,這顯然不符合邏輯和我們的習慣,因為在一般情況下,序數的計算是從「1」開始的,而不是從「0」開始的。而正是這個理解上的錯誤,所以才導致了世紀末尾年為公元99年的錯誤認識,這也是錯把1999年當作是二十世紀末尾年,錯把2000年當作是二十一世紀起始年的原因.因為公元計數是序數,所以應該從「1」開始,21世紀的第一年是2001年. 蒲豐試驗 一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。 蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。 數學魔術家 1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。 工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。 這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。 工作到最後一天的華羅庚 華羅庚出生於江蘇省,從小喜歡數學,而且非常聰明。1930年,19歲的華羅庚到清華大學讀書。華羅庚在清華四年中,在熊慶來教授的指導下,刻苦學習,一連發表了十幾篇論文,後來又被派到英國留學,獲得博士學位。他對數論有很深的研究,得出了著名的華氏定理。他特別注意理論聯系實際,走遍了20多個省、市、自治區,動員群眾把優選法用於農業生產。 記者在一次采訪時問他:「你最大的願望是什麼?」 他不加思索地回答:「工作到最後一天。」他的確為科學辛勞工作的最後一天,實現了自己的諾言。