数学建模方向本科毕业论文
1. 有关数学建模,毕业论文啊 急~~~~
方程一:Y=aY1+bY2+cY3
a、b、c为权重
Y1新造纸吨数
Y2新塑料吨数
Y3新玻璃吨数
方程二:y=ay1+by2+cy3
y1回收纸张吨数
y2回收塑料吨数
y3回收玻璃吨数
方程三:I=y/Y
研究I的变化趋势,阐述资源回收利用的发展
2. 关于用数学建模获奖作品作为毕业论文的问题
什么时间要的,帮啊
3. 求两三篇数学建模的论文(附带原题),一般的就行,字数不要太多。急急急!
加把油再好好找找首先建议你先列一个提纲,明确自己的目标,到底方向在哪里,想写什么,其实这是很重要的,即使你觉得你很难写出一整篇论文,或者想用拼凑的方式完成论文,都必须要先明确你的论文想说什么。 论文的内容都不清楚,又如何去找资料呢? 其次中国的毕业论文,就一大抄,我看过这么多网站,比较欣赏的有学生大(studa),感觉那里做的还不错,还有 http://www.papersempire.com/ ,其余的不予评价。 当然,最好就是你自己写,资料其实不必找别人的论文,既然是抄,你又明确了自己想写什么,那抄别的资料,新闻评论,各种论述也是一样,最关键的是拼凑的技巧。其实别人的论文,大部分也是从各方各面抄来的而已,主题一明确,就好抄了。 最后也是最重要的,无论什么论文,最好能有自己的观点,即使只是一点点,或者比较浅显的观点,也是很好的,会显得新鲜,有创造性,容易得到老师的好评。 怎样写论文 在整个读研的过程中,你需要写一到两篇(这取决于你所在系的规定)毕业论文,以获得PhD或者MS。 勤于写作不仅仅给你练习的机会。 学术的规则就是要么发表,要么腐烂。在很多领域和学校,这通常开始于 你成为一名教授时,但是我们实验室的很多研究生毕业之前就已经开始发表论文了。 鼓励发表和分发论文是很好的政策。 写下自己的想法是很好的调整思路的方式。你会经常地发现自以为很完美的想法一旦写下来就显得语无伦次。 如果你工作的目的是不仅为自己还要为他人服务,就必须把它发表。这也 是研究的基本责任。如果你写得精彩,会有更多的人来了解你的工作。 AI但凭单打独斗是很难做的,你需要经常地从他人那里获得反馈。对你的 论文作评论就是最重要的一种形式。任何事情,要做就要做到最好。 阅读有关如何写作的书籍。Strunk和White的《Elements of Style》对基 本的应该如何不应该如何做了介绍。Claire的《The MLA’s Line By Line》(Houghton Mifflin)是有关在句子级别如何编辑的书籍。Jacques Barzun的《Simple and Direct : A Rhetoric for Writers》(Harper and Row, 1985)是有关如何作文的。 写论文时,读读那些写作高超的书,并思考作者的句法运用。你会发现不 知不觉地,你已经吸收了作者的风格。 要成为写作高手,需要付出颇多,历经数年,期间还要忍受和认真对待他 人的批评。除此之外,并无捷径可走。 写作有时候是很痛苦的,看起来好像是从“实际的”工作中分心了。但如 果你已经掌握了写作技巧,写起来会很快。而且如果你把写作当作一门艺术的话,你 能从中得到很多乐趣。 你肯定会遇到思路阻塞的情况,这有很多的可能原因,没有一定可以避免 的方法。追求完美可能导致思路阻塞:无论开始写什么,总觉得不够好。要理解写作 是一个调试的过程。先写一个草稿,然后返回修订。写草稿有助于理顺思路,如果写 不出来正文,那就写个大纲。逐步对之细化,直到已经很容易写出子部分的内容。如 果连草稿也写不出来,隐藏掉正在写作的所有窗口,然后随便输入自己脑袋里想到的 东西,即使看起来好像是垃圾。当你已经写出了很多文本后,重新打开窗口,将刚才 写的东西编辑进去。 另外一个错误是以为可以将所有的内容依次写出。通常你应该将论文的核心内容 写出来,最后才是介绍部分。引起作者思路阻塞的另一个原因是不切实际的以为写作 是很容易的事情。写作是耗时耗力的,如果发现自己每天只能写一页,也不要放弃。 完美主义可能会导致对本来已经足够好的论文还在不停地打磨。这是浪费 时间。(这也是一种有意无意之间逃避做研究的表现)。将论文看作你与本领域其他 人交谈时的一句话。在交谈中,并不是每一句话都是完美的。很少有人会期待自己的 某次谈话就是全部的故事,是与对方的最后一次交流。 写信是一种很好的练习。很多技术论文,如果其风格更类似于给朋友的信 ,那么会有很大的提高。坚持记日记也是练习写作的方法(也会使你试验更多的文体 ,不仅仅是技术论文)。这两种方法还有其它的实质作用。 一个常见的陷阱是花很多时间去追求修辞而不是内容。要避免这样。LaTeX 并非完美,但是它有很多你所需的修饰语。如果这还不够,还可从其他从事这一研究 的人那里借用一些词语用法。很多站点(例如MIT)维护了一个写作修辞的库。 清楚自己要表达什么。这是清楚的写作中最难最重要的因素。如果你写了 拙劣的东西,且不知道如何修改,这很有可能是因为你不知道自己要说什么。一旦搞 清楚了自己要说什么,说就行了。 论文的写作要有利于读者查找到你所做的工作。无论是段落的组织还是通 篇的组织,都要将最核心的部分放在前面。要精心写作摘要。确保摘要已经反映出你 的好思路是什么。确保自己明白自己的创新点是什么,然后用几句话表达出来。太多 的论文摘要只是一般性地介绍论文,说是有一个好思路,却不说是什么。 不要用大话来贩卖你的工作。你的读者都是很优秀的人,正直且自尊。与 之相反,也不要为自己的工作道歉或者进行消减。 有时候你意识到某个子句、句子或者段落不够好,却不知道如何修改。这 是因为你钻到死胡同里出不来了。你需要返回重写这一部分。现实中这种情况很少发 生。 确保自己的论文中有中心思想。如果你的程序在10毫秒内解决了问题X,告 诉读者你是如何办到的。不要只是解释呢的系统是如何构建的,是做什么的,还要解 释其工作原理和价值所在。 写作是给人看的,而不是机器。因此光观点正确是不行的,还要易懂。不 要靠读者自己去推理,除非是最明显的推论。如果你在第七页的脚注上解释了某个小 玩意的工作原理,接着在第二十三页没有进一步解释就引用了它,此时如果读者感到 困惑一点都不值得奇怪。正式的论文要写清楚是很难的。不要模仿数学领域的文献, 它们的标准是尽可能少的解释,使读者感到越困难越好。这并不适用于AI。 写完一篇论文后,删掉第一段或者头几句话。你会发现那是与内容无关的 一般性话语,更好的介绍语句在第一段最后或者第二段的开头。 如果你等做完所有的工作后才开始写作,会失去很多。一旦开始了某个科研项目 ,要养成这样的习惯:写作解释当前工作进展或者每几个月学习所得的非正式论文。 从你的研究笔记中的记载开始。花两天的时间写下来——如果你花的时间更长,说明 你是一个完美主义者。将论文与你的朋友分享。写的是草稿——不是为了被引用的那 种。将论文复制数十份,送给那些感兴趣的人(包括你的导师)。与写正式论文相比 ,这样做具有很多相同的好处(评论,理清思路,写作练习等等),而且从某种意义 上讲,付出无需那么多。经常地,如果你做得不错,这些非正式论文以后可以作为正 式论文的骨干内容,也就是从AI实验室的Working Paper成为一篇期刊文章。 一旦你成为Secret Paper Passing Network的成员,会有很多人给你寄论文拷贝 要求评论。获得他人对自己的论文的评论是很有价值的。因此你评论的论文越多,你 获得支持就越多,也会收到更多人对你论文的评论。不仅如此,学习评价别人的论文 有助你的选择。 为论文写有用的评论是一门艺术。 要写出有用的评论,需要读两遍论文。第一遍了解其思想,第二遍开始作 评论。 如果某人在论文中屡次犯同一错误,不要每次都标记出来。而是要弄清楚 模式是什么,他为什么这样做,对此还可以做什么,然后在第一页清晰地指出或者私 下交流。 论文的作者在合并你的评论时,将会遵循最小修改的原则。如果可以,就 只修改一个词,不行再修改一个词组,再不行才修改整个句子。如果他的论文中某些 拙劣之处使得他必须修改整个段落,整个小节甚至整篇论文的组织,要用大字体的字 母指出来,这样他才不会忽视。 不要在论文写毁灭性的批评如“垃圾”。这对于作者毫无帮助。花时间提 出建设性的建议。要设身处地地为作者着想。 评论有很多种。有对表达的评论,有对内容的评论。对表达的评论也可以很不同 ,可以是校对打字稿,标点,拼写错误,字词丢失等。应该学一些标准的编辑符号。 还可以是校正语法,修辞,以及混乱不清楚的段落。通常人们会持续地犯同一语法错 误,因此需要花时间明确地指出。接下来是对组织结构的评论:不同程度(子句,句 子,段落,小节乃至一章)的次序混乱,冗余,无关的内容,以及丢失论点。 很难描述对内容进行评论的特征。你可能建议作者扩展自己的想法,考虑某个问 题,错误,潜在的问题,表达赞美等。“因为Y,你应该读X”是一种总是有用的评论。 当被要求对论文作评论时,你首先想弄清楚哪种评论更有用。对于早期的论文草稿, 需要你主要对内容和论文的组织结构作评论;对于最终的草稿,需要你主要评论表达 的细节。注意,作为一种礼貌,在要求别人评论之前,应首先用拼写检查器对自己的 论文进行检查。 你无须接受所有的意见,但是必须都认真对待。将论文的部分内容裁掉是挺令人 痛心的,但往往也提高了论文的水平。你经常会发现某个意见确实指出了问题,但是 解决方法你觉得不可接受,那么就去寻找第三条道路。 要多发表论文,这其实比想象中的容易。基本上,AI出版物评审者评审论文的标 准是:(a)有新意;(b)在某些方面,符合标准。看看IJCAI的会议录,你会发现论文录 取的标准相当低。这种情况由于评审过程本身固有的随机性而变得更糟糕了。所以一 个发表论文的诀窍是不停地试。 确保论文可读性比较好。论文被拒绝的原因,除了没有意义之外,就是无 法理解或者组织糟糕。 论文在投往期刊之前,应该交流一段时间,并根据反馈的评论进行适当的 修订。要抵制那种急匆匆地把结果投往期刊的做法。在AI领域,没有竞赛,而且不管 怎么说,出版周期的延迟要大大超过对草稿进行评论的时间。 读一读你想投稿的期刊或者会议的过刊,确保自己论文的风格和内容是适合的。 很多出版物都有一页左右的“作者投稿须知”,仔细看看。 主要的会议都会在被接收的论文中评出内容和表达俱佳的获奖论文,仔细 研究研究。 通常是向会议投交一篇篇幅比较短的有关部分工作内容的早期报告,然后 再往期刊投交一份篇幅长的最终的正式论文。 论文被决绝了——千万不要沮丧灰心。 期刊和会议的论文评审过程存在很大的不同。为了节省时间,会议论文的 评审必须迅速,没有时间细究或者交流。如果你被拒绝了,你就失败了。但期 刊论文则不同,你可以经常地与编辑争辩,通过编辑与评审人争辩。 评审人一般都会对你有帮助的。如果你收到了令人生厌的评审报告,应该 向大会的程序主席或者编辑投诉。不能期望可以从会议论文评审人的报告那里 得到多少反馈。但对于期刊论文,往往可以得到非常棒的建议。你不必完全按 照评审报告的建议去做,但是,如果你不按照报告去做,那么就必须解释原因 ,并且要意识到这可能会导致进一步的负面评价。不管怎么样,无论是哪种的 评审,作为评审者都要有礼貌。因为在余下的职业生涯中,你将会与被评审者 在一个学术圈子里。 MIT AI Lab Memos大体上是或者接近发表的水平。实际上,Technical Reports基本上都是这些Memos的修订版本。Working Papers则更不正式,这是 很好的将自己的论文分发给同事们的方法。要出版这些内部文件,只需到 Publications Office(在活动楼八层)领一份表格,并有两位教员签字即可。 就像其它的科研活动一样,论文写作所花的时间总是比期望的要高。论文 的发表在耗费时间这个问题上则更严重。当你完成了一篇论文,投出去,等待 发表。数月后,论文以及评论被返回来。你不得不对论文进行修改。然后又是 几个月,才返回对你的修改的确认。如果你同时发表了该论文的不同形式,如 有一篇短的投会议,一篇长的投期刊,这样的过程将反复数个回合。结果有可 能是当你已经厌倦了,研究主题也已经令人生厌后数年,你仍然在修改那篇论 文。这启示我们:不要去做那些需要热情投入但是很难发表论文的研究——苦 不堪言。
采纳哦
4. 数学建模论文
数学建模教学当中的地位
摘要:数学,建模,教学,主导
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学建模
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
编辑本段数学建模的意义
数学建模
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
应用数学模型
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。
编辑本段过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。
编辑本段起源
进入西方国家大学
数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
在中国
1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。 2009 年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)!
编辑本段大学生数学建模竞赛
全国大学生数学建模竞赛
全国大学生数学建模竞赛是国家教育部高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月末的三天内举行;大学生以队为单位参赛,每队3人,专业不限。
全国大学生数学建模竞赛章程(2008年)
第一条 总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。 第二条 竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 第三条 竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。 2.竞赛每年举办一次,一般在某个周末前后的三天内举行。 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理。 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。 5.竞赛开始后,赛题将公布在指定的网址供参赛队下载,参赛队在规定时间内完成答卷,并准时交卷。 6.参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛的规范性和公正性。 第四条 组织形式 1.竞赛由全国大学生数学建模竞赛组织委员会(以下简称全国组委会)主持,负责每年发动报名、拟定赛题、组织全国优秀答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。 2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。 3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,以参赛校数和队数、征题的数量和质量、无违纪现象、评阅工作的质量、结合本赛区具体情况创造性地开展工作以及与全国组委会的配合等为主要标准。
数学建模的应用,对于数学建模竞赛来说是非常大的促进和动力。 目前,国内首家数学建模公司-北京诺亚数学建模科技有限公司在北京成立。已读博士的魏永生和另外两个志同道合的同学一起合作的创业项目,源于他们熟悉的数学建模领域。 魏永生三人在2003年4月组建了一个大学生数学建模竞赛团队,当年就获得了国家二等奖,2005年荣获了国际数学建模竞赛的一等奖,同年10月注册了数学建模爱好者网站,本着数学建模走向社会,走向应用的方向,他们在去年6月正式确立了以数学建模应用为创业方向,组建了创业团队,开启了创业之路。本月初,北京诺亚数学建模科技有限公司正式注册,魏永生团队的创业正式走向正轨。 目前,诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其他相关领域的数学建模及数学模型解决方案 、咨询服务。 魏永生向记者解释说,也许很多人并不了解数学建模究竟有什么用途,他举了个例子,一个火车站,要计算隔多久发一辆车才能既保证把旅客都带走,又能最大程度的节约成本,这些通过数学建模都能算出最优方案。 魏永生介绍说,他们的数学建模团队已有6年的历史,彼此配合很默契,也做了数十个大大小小的项目。他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
5. 数学建模论文可以提交成毕业论文吗
不行的,需要做一部分的修改和完善
6. 朋友,谁有关于数学建模的利弊的毕业论文,帮帮忙
我没有O(∩_∩)O哈哈~ 不过么中学生建模 似乎早了点
7. 谁能发给我数学建模在生活中的运用毕业论文啊
论数学建模在经济学中的应用
【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。
【关键词】经济学 数学模型 应用
在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。
一、数学经济模型及其重要性
数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。
数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。
二、构建经济数学模型的一般步骤
1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。
三、应用实例
商品提价问题的数学模型:
1.问题
商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。
2.实例分析
某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。
解:设最高提价为X元。提价后的商品单价为(25+x)元
提价后的销售量为(30000-1000X/1)件
则(25+x)(30000-1000X/1)≥750000
(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。四、数学在经济学中应用的局限性
经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:
1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。
2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。
3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。
4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。
参考文献:
[1]孙红伟.商场经营管理中的几个数学模型分析[J].商场现代化,2006,(8).
8. 数学建模论文范文怎么写
数学建模论文写作
一、写好数模答卷的重要性
1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题
1.评阅原则
假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构
题目(写出较确切的题目;同时要有新意、醒目)
摘要(200-300字,包括模型的主要特点、建模方法和主要结论)
关键词(求解问题、使用的方法中的重要术语)
1)问题重述。
2)问题分析。
3)模型假设。
4)符号说明。
5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)
7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)
8)模型评价(特点,优缺点,改进方法,推广。)
9)参考文献。
10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)
3. 要重视的问题
1)摘要。
包括:
a. 模型的数学归类(在数学上属于什么类型);
b. 建模的思想(思路);
c. 算法思想(求解思路);
d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);
e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。
2)问题重述。
3)问题分析。
因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。
5)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设
b. 根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。
6) 模型的建立。
a. 基本模型:
ⅰ)首先要有数学模型:数学公式、方案等;
ⅱ)基本模型,要求完整,正确,简明;
b. 简化模型:
ⅰ)要明确说明简化思想,依据等;
ⅱ)简化后模型,尽可能完整给出;
c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;
ⅱ)能用简单方法解决的,就不用复杂方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:
▲ 建模中,模型本身,简化的好方法、好策略等;
▲ 模型求解中;
▲ 结果表示、分析、检验,模型检验;
▲ 推广部分。
e.在问题分析推导过程中,需要注意的问题:
ⅰ)分析:中肯、确切;
ⅱ)术语:专业、内行;
ⅲ)原理、依据:正确、明确;
ⅳ)表述:简明,关键步骤要列出;
ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
7)模型求解。
a. 需要建立数学命题时:
命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
8) 结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;
b. 对数值结果或模拟结果进行必要的检验;
结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;
d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;
e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲ 求解方案,用图示更好。
9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
10)模型评价
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
11)参考文献
12)附录
详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:
a. 模型的正确性、合理性、创新性
b. 结果的正确性、合理性
c. 文字表述清晰,分析精辟,摘要精彩
三、关于写答卷前的思考和工作规划
答卷需要回答哪几个问题――建模需要解决哪几个问题;
问题以怎样的方式回答――结果以怎样的形式表示;
每个问题要列出哪些关键数据――建模要计算哪些关键数据;
每个量,列出一组还是多组数――要计算一组还是多组数。
四、答卷要求的原理
1. 准确――科学性;
2. 条理――逻辑性;
3. 简洁――数学美;
4. 创新――研究、应用目标之一,人才培养需要;
5. 实用――建模、实际问题要求。
五、建模理念
1. 应用意识
要解决实际问题,结果、结论要符合实际;
模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2. 数学建模
用数学方法解决问题,要有数学模型;
问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
3. 创新意识
建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
9. 数学建模论文怎样写
摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。
关键词:数学建模;综合素质;教学;数学应用
(一)数学建模的概念
数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。
(二)数学建模的思想内涵